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Current Activity

Our current activity for the AACS Project has been focusing on providing authentic data to fill our database. By “authentic data” we mean information about projectile points from well dated stratigraphic context. For this particular stage in the project, we are accepting only objects from the sites and strata that were originally used to generate the type designations. This allows us to produce a “Clean” set of data that reproduces as closely as possible the discriminate analysis carried out by Lohse is 1985. The data we are collecting is being stored in a database that is acting as our central repository for not only the images of the objects that make up the dataset, but also the results of the analysis that are being carried out.
This data is then being fed into an artificial neural network (ANN) which will act as the brain of our artificial expert, SIGGI. The artificial brain that is produced by this effort, which will be described below, is only as good as the information used to produce it. For this reason we have planned to go out into the general archaeological community to collect information about artifacts that will help us to “go beyond typology.” That is, we want to collect information about items that were not included in the original typological studies and include that in our system as well. This will help us to further refine the notion of what each type is, beyond the original definitions. 
Most importantly, however, we are planning on using SIGGI to help us see how it is that we human experts make the decisions we make when making typological classifications. This reflexive activity we feel is one of the more important aspects of the project. We know that certain kinds of things should be classified in certain ways, but we have trouble explaining WHY they should be classified those ways. It is our hope that by watching SIGGI make classifications, we can gain a better understanding of why we make classifications the way we do.

Feeding SIGGI

In order to do any of the things mentioned above we need to start by having a SIGGI be smart enough to classify items into types. How is that done? To understand how SIGGI’s brain is constructed, we need to look at what are known as Artificial Neural Networks (ANNs). 
An ANN is composed of a series of artificial neurons, or nodes, which are connected by a series of edges which possess an attribute known as a weight. This produces a structure that reflects very closely the structure of a biological neuron. 
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Figure 1: An Artificial Neuron. Modified from Buckland, 2002 figure 7.2. 
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Figure 2: A Biological Neuron. Modified from Buckland, 2002 figure 7.1.
Like a biological brain, the ANN is then constructed from the intelligent combination of these artificial neurons and weights. A typical ANN consists of three layers: an input layer, a hidden layer, and an output layer.  The input layer consists of a set of data items that you want the ANN to act upon in some way. The output layer is the set of valid responses that the ANN is being asked to perform. In our case the input layer consists of information pulled off of an image, while the output layer consists of the set of valid projectile point types we are asking the ANN to classify the images of projectile points into. The hidden layer is simply an intermediate stage in the actual analysis process that the data is manipulated into and passed through. 
The weights are a set of values used by the ANN to modify the inputs in an organized way so that the desired results are produced. The key to having an intelligent ANN is the proper combination of the weights that modify the inputs to the ANN so that the desired results occur. This proper combination is conducted through a two step process. The first step sees each artificial neuron performing a summation of all the incoming inputs, which have been modified by the weight of the path that that input took to the neuron. This summed value is then fed through the second step, which is known as an activation function. 
The activation function is a mathematical equation that evaluates the summed value of the inputs to the neuron and decided whether or not the neuron will “Fire.” In a biological neuron there are two states, firing or not firing. In ANNs there is really only one state: firing. The activation function simply calculates the value that will be passed on to the next stage of the process. Typically, there are two types of activation functions: a step function and a sigmoid function. The step function simply compares the summed inputs to a stored “activation value.” If the sum is greater or equal to the activation value the neuron will pass a 1 through its outputs, otherwise it will pass a zero, which effectively is like not firing at all. The sigmoid activation function on the other hand used an equation to produce a value within a given range of values, rather than an all or nothing approach like the step function. A typical sigmoid function looks like: output =1/1+e↑-a/p where e is a mathematical constant, a is the sum of the inputs to the neuron, and p is a number that controls the shape of the curve, which is typically 1. The sigmoid function generates a value between 0 and 1, and is where the name of our artificial expert SIGGI comes from. 

Once the activation of one layer is complete the next layer performs the same calculations until the data reaches the output layer. In the output layer the neurons pass the final values back to the program, and the process ends. These raw values themselves may then be further modified, or may be used as is depending on what you wanted the ANN to do. In our case, we take the values, pass them through a normalization function, called a softmax function, which produces a normalized distribution across the domain of the outputs. What this does for us is it turns a set of seemingly unrelated variables and converts then into a set of statistical probabilities. This way when we see the output of the ANN, what we see is the probability of inclusion in each projectile point type, rather than simply a set of activations of neurons.

All of this is completely meaningless if the weights in the ANN haven’t been set up properly. Setting up the weights is a process known as “training.” There are two ways to train an ANN: supervised and unsupervised. A typical unsupervised training utilizes another type of artificial intelligence system to monitor the values being generated by the training process. This other AI then nudges the training values so that the correct outputs are generated from the input set. As you can imagine, this is very hard to do. The other method of training an ANN, supervised training, is much easier and is what we used. A typical supervised training run uses feedback from a set of pre-defined inputs that modifies the weights by a set value that is fed back into the network in reverse. This type of training is known as back propagation.  
The way back propagation works is by feeding the total set data through the network, and for each item in the data set calculate the error between the expected values and the actual values returned from the ANN. The error value is then fed systematically through a set of equations at each layer in the network. The equation for that layer then modifies the weights that feed into that layer so that the next time that set of inputs is fed into the ANN, the ANN is more likely to produce the desired values. What this process is doing from a statistical perspective is fitting a line to the data set so that a predictive model is generated. In essence, the ANN is conducting a discriminant analysis.  

The other main component of the ANN that we haven’t covered yet is what exactly the inputs for the network actually are. We chose to use images as the input to our network. We don’t actually feed the entire image into the net, but we first manipulate it so that it meets a few basic requirements first. The steps the image undergoes are as follows:

1. Load an image.

2. Convert the image to a grayscale image.

3. Produce a black and white bitmap of the grayscale image.

4. Find the background of the image.

5. Smooth the image to remove edge distortions.

6. Generate a rough set of outlines.

7. Find the largest object in the image.

8. Remove all outlines on the image but the outline of the largest object.

The outline is then fed into what we call the Tokenizer, which produces a set of tokens from the outline. These tokens are generated by starting at the center top of the outline and reducing the outline into a series of line segments. The line segments are then converted from a set of pairs of end points into a distance and direction from the start point of each pair to the endpoint of that pair. These distances and directions are then packaged into a vector, and these vectors are the tokens we use as our inputs to the ANN. This abstraction of the outline preserves enough of the variation in the object that the original outline is still quite discernable. 
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Figure 4. The generation of inputs for SIGGI.

Of course, the accuracy of the system is dependant on the number of token generated. We had hoped to use a minimum number of tokens, such as the eighteen line segments that were generated for the original descriminant analysis in 1985, but that number of tokens was not descriptive enough. For the final version of the software we chose to use 100 tokens, and this provided enough distinguishing variability in the inputs that the system was capable of separating out the different types quite nicely.  
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